mymathlabtutor
General
Algebra
Geometry
Coordinate-geometry
Statistics
Calculus
mymathlabtutor
mymathlabtutor
Home
General
Algebra
Geometry
Coordinate-geometry
Statistics
Calculus
MATH SOLVE
Home
General
4cos^2(theta)+2sin(theta)=2
8 months ago
Q:
4cos^2(theta)+2sin(theta)=2
Accepted Solution
A:
Answer:The value of given expression i.e Ф is 90° and - 30° Step-by-step explanation:Given as :4 cos²Ф + 2 sinФ = 2 ∵ sin²Ф + cos²Ф = 1 , so , cos²Ф = 1 - sin²ФOr, 4 ( 1 - sin²Ф ) + 2 sinФ = 2 Or, 4 - 4 sin²Ф + 2 sinФ = 2 or, 4 sin²Ф - 2 sinФ - 4 + 2 = 0or, 4 sin²Ф - 2 sinФ - 2 = 0or, 2 sin²Ф - sinФ - 1 = 0or, 2 sin²Ф - 2 sinФ + sinФ - 1 = 0Or, 2 sinФ ( sinФ - 1 ) + 1 ( sinФ - 1 ) = 0∴ ( sinФ - 1 ) ( 2 sinФ + 1 ) = 0i.e ( sinФ - 1 ) = 0 And ( 2 sinФ + 1 ) = 0since ( sinФ - 1 ) = 0 So, sinФ = 1Or, Ф = [tex]sin^{-1}(1)[/tex] = 90° And ( 2 sinФ + 1 ) = 0Or, 2 sinФ = - 1Or, sinФ = - [tex]\frac{1}{2}[/tex]Or, Ф = [tex]sin^{-1}(-\frac{1}{2})[/tex] = - 30° Hence the value of given expression i.e Ф is 90° and - 30° Answer