Q:

98 points! Easy! Show work! PART 2!

Accepted Solution

A:
Hey there :)

14) The perimeter of this square is given as 28a²b⁴ 
The perimeter formula of a square is P = 4 x side
28a²b⁴ = 4s
[tex] \frac{28a^2b^4}{4} = \frac{4s}{4} [/tex]
7a²b⁴ = s

Area formula of a square is:
A = side²
   = ( 7a²b⁴)²
   = 49a⁴b⁸

15) [tex] \frac{(r^2st^3)(20r^-^3s^-^1t^-^4)}{(-4r^-^2t)^3} [/tex]
Let's deal with it one by one and combine at the end

Numerator = ( r²st³ )( 20r⁻³s⁻¹t⁻⁴ )
The product of power rule applies here
                   = ( 20r⁻¹t⁻¹ ) → { r²⁺⁽⁻³⁾s¹⁻¹t³⁺⁽⁻⁴⁾ }
 
Denominator = ( -4r⁻²t )³
The power of a product rule applies here
                       = ( -64r⁻⁶t³ ) → ((-4)³(r⁻²ˣ³)(t)³)

Combine = [tex] \frac{20r^-^1t^-^1}{-64r^-^6t^3} [/tex]
Quotient of powers rule apply here 

Lets separate again: [tex] \frac{r^6}{r} = r^5 [/tex] , [tex] \frac{1}{t^3(t)} = \frac{1}{t^4} [/tex]

Final = [tex] \frac{20r^5}{-64t^4} = -\frac{5r^5}{16t^4} [/tex]

16) [tex] \sqrt[3]{x^4} [/tex]
The power inside the root will be the numerator and root number will be the denominator 

[tex]x^ \frac{4}{3} [/tex]

17) [tex] k^\frac{3}{4} [/tex]× [tex] k^\frac{1}{2} = k^ \frac{3}{8} [/tex]

The numerator will be the power inside and the denominator will be the root number

[tex] \sqrt[8]{x^3} [/tex]