MATH SOLVE

8 months ago

Q:
# Fully answer the question below

Accepted Solution

A:

Answer:The second expression is not equivalent to the initial expression.Step-by-step explanation:Given: [tex]$ \frac{1}{5}g - \frac{1}{10} -g + 1\frac{3}{10}g - \frac{1}{10} $[/tex].Clubbing the co-efficient of g and constant terms. we get: [tex]$ \frac{1}{10}g + (-1)g + 1\frac{3}{10}g + -\frac{1}{10} + - \frac{1}{10} $[/tex]This is the first step and is equivalent to the initial expression.Now, Simplifying the above expression we have: [tex]$ \frac{1}{5}g - g + \frac{13}{10}g + (- \frac{2}{10} )$[/tex]β [tex]$ ( \frac{1}{5} - 1 + \frac{13}{10}) g $[/tex]β [tex]$ g (\frac{2 -10 + 13}{10}) - \frac{2}{10} $[/tex]β[tex]$ \frac{5}{10}g - \frac{2}{10} $[/tex]β [tex]$ \frac{1}{2}g - \frac{1}{5} $[/tex]This is not the second step done by him. Not equivalent to the initial step.