Q:

Given that ΔABC ≅ ΔDEF, m∠A = 70°, m∠B = 60°, m∠C = 50°,m∠D = (3x + 10)°, m∠E= (1/3y + 20)°, and m∠F = (z2 + 14)°, find the values of x and y.

Accepted Solution

A:
Answer:Value of x is 20 and y is 120.Step-by-step explanation:Given,m∠A = 70°, m∠B = 60°, m∠C = 50°,m∠D = (3x + 10)°, m∠E= (1/3y + 20)°, and m∠F = (z² + 14)°Also,ΔABC ≅ ΔDEF,Since, the corresponding parts of congruent triangles are always congruent or equal.⇒ m∠A = m∠D, m∠B = m∠E and m∠C = m∠FWhen m∠A = m∠D[tex]\implies 70 = 3x + 10[/tex][tex]70 - 10 = 3x[/tex][tex]60 = 3x[/tex][tex]\implies x =\frac{60}{3}=20[/tex]When, m∠B = m∠E,[tex]\implies 60 = \frac{1}{3}y + 20[/tex][tex]60 - 20 =\frac{1}{3}y[/tex][tex]40 =\frac{1}{3}y[/tex][tex]\implies y =3\times 40=120[/tex]