In isosceles ΔABC, AC = BC, AB = 6 in, CD ⊥ AB, and CD = 3 in. Find the perimeter of the isosceles triangle.
Accepted Solution
A:
Answer:Step-by-step explanation:Consider the given triangle ABC, we have AC = BC, AB = 6 in, CD ⊥ AB, and CD = 3 in. Using ΔCDB, we have[tex](CB)^{2}=(CD)^{2}+(DB)^{2}[/tex][tex](CB)^{2}=(3)^{2}+(3)^{2}[/tex][tex]CB=\sqrt{9+9}[/tex][tex]CB=\sqrt{18}in[/tex]Therefore, [tex]CB=CA=\sqrt{18}in[/tex] (Given)Now, Perimeter of an isosceles triangle is given By: 2a+b⇒[tex]2(\sqrt{18})+6=2(4.24)+6=8.48+6=14.48in[/tex]which is the required perimeter of isosceles triangle.